An approximate factorisation of three bivariate Bernstein basis polynomials defined in a triangular domain
نویسندگان
چکیده
This paper considers an approximate factorisation of three bivariate Bernstein basis polynomials that are defined in a triangular domain. problem is important for the computation intersection points curves computer-aided design systems, and it reduces to determination greatest common divisor (AGCD) d(y) polynomials. The Sylvester matrix its subresultant matrices these formed shown there four forms matrices. most difficult part degree because rank loss made harder by presence trinomial terms functions they cause entries span many orders magnitude. adverse numerical effects this wide range magnitudes mitigated processing before formed. It significantly improved results obtained if processed computations performed on their
منابع مشابه
An Algorithm for Approximate Factorization of Bivariate Polynomials
In this paper, we propose a new numerical method for factoring approximate bivariate polynomials over C. The method relies on Ruppert matrix and singular value decomposition. We also design a new reliable way to compute the approximate GCD of bivariate polynomials with floating-point coefficients. The algorithm has been implemented in Maple 9. The experiments show that the algorithms are very e...
متن کاملFactorisation of Macdonald polynomials
1. Macdonald polynomials Macdonald polynomials P λ (x; q, t) are orthogonal symmetric polynomials which are the natural multivariable generalisation of the continuous q-ultraspherical polyno-mials C n (x; β|q) [2] which, in their turn, constitute an important class of hyper-geometric orthogonal polynomials in one variable. Polynomials C n (x; β|q) can be obtained from the general Askey-Wilson p...
متن کاملA numerical study of electrohydrodynamic flow analysis in a circular cylindrical conduit using orthonormal Bernstein polynomials
In this work, the nonlinear boundary value problem in electrohydrodynamics flow of a fluid in an ion-drag configuration in a circular cylindrical conduit is studied numerically. An effective collocation method, which is based on orthonormal Bernstein polynomials is employed to simulate the solution of this model. Some properties of orthonormal Bernstein polynomials are introduced and utilized t...
متن کاملTriangular Bernstein-Bkzier patches
4. Hermite Interpolants . . , . . . . . . . . . . . . . 104 4.1. The Co nine parameter interpolant ...... 104 4.2. C’ quintic interpolants .............. 104 4.3. The general case ................... 106 5. Split Triangle Interpolants . . . . . . . . . 107 5.1. The C’ Clough-Tocher interpolant . . _ . . 108 5.2. Limitations of the Clough-Tocher split . 110 5.3. The C’ Powell-Sabin interpolants ...
متن کاملAn iterative approximate method of solving boundary value problems using dual Bernstein polynomials
In this paper, we present a new iterative approximate method of solving boundary value problems. The idea is to compute approximate polynomial solutions in the Bernstein form using least squares approximation combined with some properties of dual Bernstein polynomials which guarantee high efficiency of our approach. The method can deal with both linear and nonlinear differential equations. More...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2021
ISSN: ['0377-0427', '1879-1778', '0771-050X']
DOI: https://doi.org/10.1016/j.cam.2020.113381